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Abstract

This work examines the role of capillarity in the non-modal linear stability properties of three-dimensional disturbances in sheared
two-layer flow of immiscible fluids of similar density. Capillarity reduces the transient growth of energy that occurs due to the non-nor-
mality of the linear stability problem according to a scaling of peak energy with We1/2 over a wide range of Weber number, viscosity ratio
and wavenumber. More importantly, the participation of capillary modes in non-modal growth leads to oscillatory energy growth and to
larger disturbance growth rates, features that are confirmed by computing the numerical range and numerical abscissa of the non-normal
disturbance evolution operator. Examination of energy components and disturbance structure reveals that early rapid growth and sub-
sequent oscillations are due to the coupling of streamwise vortices – the two-fluid analog of lift-up – to the displaced interface.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Layered channel flow of immiscible fluids is found in a
broad range of applications, most notably in the coating
and petroleum industries, and is the subject of many theo-
retical, experimental and simulation studies. Theoretical
approaches often consider the stability of a basic flow to
normal mode type disturbances, although in recent years
the focus of flow stability study has shifted to also consider
the transient growth of disturbances resulting from the
non-normality of the system of equations that describes
the evolution of linearized disturbances.

This work extends the two-fluid transient growth studies
made by South and Hooper (1999) and van Noorden et al.
(1998) by considering three-dimensional disturbances. Tra-
ditional eigenvalue (asymptotic) instability is not of central
concern here; extensive studies of this kind can be found in,
e.g., Renardy (1987), Yiantsios and Higgins (1988) or Hoo-
0301-9322/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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per (1989) and references therein. The main results of linear
eigenvalue theory can be briefly summarized: two-fluid
flows involving a jump in viscosity exhibit a longwave
instability first elucidated by Yih (1967). This mode is a
generalization of a Kelvin–Helmholtz (KH) instability
and its mechanism of growth is inviscid. Because the ampli-
tude of this mode’s eigenfunction is concentrated near the
interface, Yih called this an interfacial mode. A different,
viscous-inertial instability mechanism has been found in a
slightly different flow context by Hooper and Boyd (1983)
and described by Hinch (1984), occurring primarily for
short waves. Both of the instabilities described above are
found in two-layer Couette flow. Two-layer Poiseuille flow
supports also a Tollmien–Schlichting (TS) or shear type
instability mechanism, closely resembling the modes of
ordinary single fluid Poiseuille flow. The stability proper-
ties at intermediate wavelengths are complicated by mode
crossings, the nature of the least stable modes depending
strongly on the depth, density and viscosity ratios. Numer-
ical stability studies at intermediate wavelengths can be
found in Hooper (1989) and in Yiantsios and Higgins
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(1988), where it is shown that interfacial tension stabilizes
short wave disturbances.

This work studies the energy growth of disturbances in
planar shear flow of two immiscible fluids, focusing on
the maximum growth at intermediate times and the maxi-
mum initial growth rates. The fluids are superposed, sepa-
rated by an interface on which there is constant interfacial
tension r. Flow parameters are chosen to roughly corre-
spond to the experimental conditions of Kao and Park
(1972), henceforth KP. The purpose here is to show the role
of interfacial tension in the non-normal growth of distur-
bance energy for sheared fluids of similar densities at mod-
erate Reynolds number.

2. Governing equations

The flow of interest is parallel channel flow of two
immiscible fluids having different densities, q1 and q2 and
different viscosities, l1 and l2, found in two layers of
depths L1 and L2, as depicted in Fig. 1. A steady solution
of the Navier–Stokes equations within the channel is
obtained by solving in each layer and matching the stress
on the interface, assumed flat, giving the following expres-
sion, borrowing the notation used by Hooper (1989):

U 1ðyÞ ¼ A1y2 þ a1y þ 1; �1 < y < 0; ð1Þ
U 2ðyÞ ¼ A2y2 þ a2y þ 1; 0 < y < n: ð2Þ

The flow has been scaled, introducing the parameters
n := L2/L1 and m := l2/l1 for the layer depth and viscosity
ratios, respectively, and U0 := U(0) = 1 and Un := U(n)/U0

for the interface and upper wall velocities, respectively. The
constants in Eq. (2) expressed in these terms are:

A1 ¼
�ðmþ nÞ þ mU n

nðnþ 1Þ ; A2 ¼
A1

m
; ð3Þ

a1 ¼
n2 � mþ mU n

nðnþ 1Þ ; a2 ¼
a1

m
: ð4Þ

In this work only the pressure driven fixed walls case is con-
sidered, giving the two-fluid Poiseuille flow corresponding
to Un= 0.
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Fig. 1. Sketch of the flow configuration.
This base state is perturbed by adding an infinitesimal
disturbance of the form:

ðuj; pjÞ ¼ ðûjðy; tÞ; p̂jðy; tÞÞeiðaxþbzÞ; ð5Þ
where u = (u,v,w), p is pressure and the subscript j = 1,2
identifies the layer. The linear equations that govern the
behavior of these perturbations can instead be written in
terms of the normal velocity v̂j and normal vorticity
ĝj ¼ ibûj � iaŵj:

o

ot
ðD2 � k2Þv̂j þ iaUjðD2 � k2Þv̂j � iaD2U jv̂j

� 1

Rej
ðD2 � k2Þ2v̂j ¼ 0; ð6Þ

o

ot
ĝj þ iaUjĝj þ ibDU jv̂j

� 1

Rej
ðD2 � k2Þĝj ¼ 0; ð7Þ

where k2 = a2 + b2, D = d/dy, and boundary conditions:
v̂j ¼ Dv̂j ¼ ĝj ¼ 0 hold on y = �1,n. Both layer Reynolds
numbers are based on the interface velocity: Rej ¼

qjU0Lj

lj
.

Note that Re2 ¼ nr
m Re1 upon defining the density ratio

parameter: r := q2/q1.
A scalar interface displacement f can be defined from the

kinematic condition

df
dt
¼ ðot þ iaU jÞf ¼ v̂j on y ¼ 0: ð8Þ

On the interface, y = 0, the normal velocity vj, the stream-
wise velocity uj = ik�2(aDvj � bgj), and the spanwise veloc-
ity wj = ik�2(bDvj + agj) must satisfy, respectively, the
following matching conditions:

v2 ¼ v1; ð9Þ
ðDv2 � Dv1Þ � bðg2 � g1Þ ¼ ik2ðDU 2 � DU 1Þf ; ð10Þ
bðDv1 � Dv2Þ ¼ aðg2 � g1Þ: ð11Þ
Similarly, at y = 0 the tangential stress components sxy and
syz must satisfy:

m½aðD2 þ k2Þv2 � bDg2 � ik2D2U 2f �
¼ aðD2 þ k2Þv1 � bDg1 � ik2D2U 1f ; ð12Þ

m½bðD2 þ k2Þv2 þ aDg2� ¼ bðD2 þ k2ÞvL þ aDg1; ð13Þ
while the normal stress syy condition is

rðotDv2 þ aDU 2v2Þ � ðotv1 þ aDU 1v1Þ

þmðD3v2 � 3k2Dv2Þ
iRe1

� ðD
3v1 � 3k2Dv1Þ

iRe1

¼ � k4

iWe
f : ð14Þ

In (14) the Weber number also appears, defined as We ¼
q1U 2

0L1=r. No Froude number is introduced since buoy-
ancy effects are neglected.

The above system (6)–(14) can be considered in operator
form

oq

ot
¼ Aq; ð15Þ

an abstract Cauchy problem with solution

qðtÞ ¼ qð0ÞetA; ð16Þ
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where q(0) is an initial disturbance and {etA} is a
semigroup.

3. Mathematical background

Energy provides a natural disturbance measure, allow-
ing an energy norm to be defined:

kqk2
E ¼

1

2k2

Z 0

�1

ðjDv1j2 þ k2jv1j2 þ jg1j
2Þdy

�

þ r
Z n

0

ðjDv2j2 þ k2jv2j2 þ jg2j
2Þdy

�
þ k2jf j2

We
; ð17Þ

where the ultimate term characterizes the contribution of
interfacial capillary energy.

The growth of a disturbance is most effectively measured
by computing ketAkE where the norm now denotes the
operator norm induced by the (vector) norm of (17). The
stability of the base flow will be examined by analyzing
the behavior of ketAkE as a function of t in the initial, tran-
sient and asymptotic periods – that is in the limit t ? 0+, t

finite, and the limit t ?1 (see Trefethen and Embree, 2005
for a complementary view of these limits).

3.1. Asymptotic growth

Introducing q ¼ ~qe�ist, where ~q ¼ ðv2ðyÞ; g2ðyÞ; f ; v1ðyÞ;
g1ðyÞÞ

T , allows (15) to be written as an eigenvalue problem,

�is~q ¼ A~q: ð18Þ

(Alternatively, f can be eliminated using relation (9), result-
ing in an eigenvalue problem of different form, as found in,
e.g., Hooper and Boyd (1983); Eq. (8) is superfluous in this
case.) Modal instability is identified with the presence in the
spectrum of A of at least one eigenvalue in the upper half
complex plane, viz.: Im(sj) > 0 for some sj. The spectrum
thus determines the behavior of disturbances, and therefore
the stability of the system, at large times.

To compute the eigenvalues and eigenvectors we use a
code based on Chebyshev collocation to solve the matrix
form of the eigenproblem; this code was presented, vali-
dated and applied to a two-phase mixing layer in Yecko
et al. (2002). Briefly, the linear problem is mapped to the
Chebyshev interval [�1,1] and the eigenfunctions
expressed as an expansion in a finite number N of Cheby-
shev polynomials Tn(y) with unknown expansion coeffi-
cients. The resulting matrix problem for the expansion
coefficients including the boundary and matching condi-
tions is solved using MATLAB.

3.2. Transient growth

The eigenfunctions ~qj of A form a complete set but are
not orthogonal since A is not normal with respect to the
inner product corresponding to the energy norm, (17),
allowing some disturbances to experience significant energy
growth at finite times even when eigenvalues indicate
asymptotic stability. To measure this transient growth,
we follow the approach advanced by Schmid and Henning-
son (2000) and define the energy amplification function
G(t) as:

GðtÞ ¼ ketAk2
E ¼ sup

qð0Þ6¼0

kqðtÞk2
E

kqð0Þk2
E

ð19Þ

while the maximum or optimal growth is defined as GO =
suptP0G(t), occurring at time tO where GO = G(tO).

In computing transient growth, an arbitrary disturbance
q is expressed as an expansion in the eigenfunctions of A,
viz: q ¼

PK
k¼1jkqk. G(t) is then computed approximately –

not in the full space of A but in the subspace defined by
the K least stable eigenfunctions. The value K is selected
large enough to achieve convergence of the approximated
G(t) to the limit: limK?1G(t,K).

In practice, computations involving the energy norm can
be recast into equivalent 2-norm problems that can be
solved accurately as a singular value problem using the
SVD capabilities of MATLAB, as described in Reddy et al.
(1993), giving both G(t) and the optimal disturbance asso-
ciated with GO; additional details can also be found in
Yecko and Rossi (2004).

It has been previously noted (by Renardy (1987), van
Noorden et al. (1998) and South and Hooper (1999)) that
when in a two-fluid flow an interfacial energy term is not
present (when interfacial tension vanishes, or We ?1)
the computation of G(t) in the reduced subspace of the K
least unstable eigenfunctions does not converge to a limit
as K is increased. Several explanations have been proposed
to explain the divergent character of G(t). Renardy has
posited (see South and Hooper, 1999 for a discussion) that
the interfacial amplitude, f, is an essential part of the dis-
turbance eigenfunction and must be included in the norm.
From the point of view of an observer, displacements of the
interface due to a disturbance are certainly more visible
than its energy. The ‘‘h-norm” introduced in Renardy
(1987) to address flows with uniform density and no inter-
facial tension includes a term of the form jfj2 but with con-
stant coefficient of unity (note that any non-zero coefficient
provides a valid norm). South and Hooper (1999), intro-
ducing a similar ‘‘M-norm,” found that values of this coef-
ficient much smaller than unity work well and that this
coefficient ideally should include an (m � 1) factor to
ensure that the single fluid result is recovered for the limit
m ? 1 (see also Malik and Hooper, 2007). In this work, the
limit of zero interfacial tension is not considered, although
convergence is explicitly re-checked whenever k2/We� 1.
3.3. Initial growth rate

The initial growth rates of disturbances can be derived
from the numerical range, a convex set given by:

W ðAÞ ¼ fq�Aq such that kqkE ¼ 1g: ð20Þ
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For non-normal A, the numerical range generally exceeds
the convex hull of the spectrum, extending into the upper
half-plane even for asymptotically stable A. The initial
growth rate of a disturbance corresponds to the greatest
excursion of the numerical range W(A) into the upper half
complex plane, or the numerical abscissa:

xðAÞ ¼ sup
z2W ðAÞ

ImðzÞ ¼ lim
t!0þ

1

t
log ketAkE ¼

d

dt
ketAkE

�����
0

:

ð21Þ
We compute the numerical range and abscissa directly
using what has become a standard algorithm (see Horn
and Johnson, 1985): consider the set of rotated matrices:
{Ah} = {eihA}. The normalized leading eigenvector ph of
the Hermitian matrix 1

2
ðA�h þ AhÞ is used to compute

ph ¼ p�hAph. For h = (�p,p], the values of ph trace the
boundary of W(A), allowing x(A) to be found immediately
from (21). A generalized form of the above algorithm by
Riedel (1994) is used in practice.
—2 —1 0 1 2 3 4 5

—4

—3

—2

—1

0

Re s

Im
 s

W(A) for We=1
σ(A)  for  We=1
W(A) for We=100
σ(A)  for  We=100

Fig. 2. Spectrum, r(A), and numerical range, W(A), for two-dimensional
disturbances: Re = 900, a = 1, b = 0; (a) m = 2, (b) m = 20.
4. Results

In this study, the choice of flow parameters has been
guided by the experimental conditions of KP. Attention is
restricted to the single density ratio, r = 0.9, to equal layer
depths, n = 1 (with one exception of n = 2), and maintain
Re = Re1 = 900. The viscosity ratio, which controls the
instability of the interfacial mode, is made to range in value
from m = 1 to m = 20 (in KP, m = 20) and the Weber num-
ber is varied from We = 1 to We = 750 (in KP, We was not
reported but can be deduced to range approximately from 2
to 50, assuming no contamination occurs).

4.1. Spectrum and numerical range

The behavior of the spectrum and the numerical range
for two-dimensional disturbances (a = 1,b = 0) is shown
in Fig. 2 for two viscosity ratios and two Weber numbers.
In this section the wavenumber is held fixed so that capillary
eigenvalues depend only on the Weber number. The discrete
spectra, shown in Fig. 2a, maintain the characteristic ‘Y’
shape of Poiseuille flow, but also containing Squire modes
along the vertical branch. The eigenvalues shown in the fig-
ure have been validated, in the limits r ? 1 and We ?1,
with those given in Dongarra et al. (1996), recovering agree-
ment to 10 digits. When the viscosity contrast is weak but
interfacial tension is strong (m = 2,We = 1), the entire spec-
trum falls in the lower half-plane, although the numerical
range extends into the upper half-plane a distance
x(A) = 0.25, as shown in Fig. 2a. At larger Weber number,
the leading (interfacial) mode is unstable and its eigenvalue,
s = 1.026949 + i0.002006, falls in the upper half-plane. The
numerical range in this case, by contrast, extends only to
x(A) = 0.15. The inflation of the numerical range is a shib-
boleth of non-normality and is here seen to be a direct result
of the properties of the capillary modes in the spectrum.
For a stronger viscosity ratio, m = 20, more typical of the
experiments of KP, the interfacial mode for both We = 1
and We = 100 cases moves relatively far into the upper
half-plane (see Fig. 2b). Due to non-normality, the numer-
ical range extends even farther upward, giving x(A) = 1.1
when We = 1 and x(A) = 1.8 when We = 100. Note, how-
ever, that in contrast to the m = 2 case, here it is the spectral
characteristics of the (unstable) interfacial mode which con-
trols the numerical range. It is unsurprising that shear exerts
a greater influence when the viscosity ratio is large.

The three-dimensional disturbances examined here are
streamwise uniform, having a = 0; such disturbances were
found by Yecko and Zaleski (2005) to most strongly exhi-
bit the non-normal behavior of this system. The spectrum
of streamwise uniform modes also includes capillary waves,
as shown below, facilitating the study of capillary effects.
Here the wavenumber continues to be held fixed at b = 1,
although in the subsequent sections b will be varied to give
the largest disturbance energy amplification factor.

In each case of Fig. 3 the entire spectrum is found in the
lower half-plane, and all but two modes of the spectrum
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have collapsed onto the axis Re s = 0. These two highly
visible exceptions, found near Im s = 0 with non-zero
Res, correspond to a pair of oppositely propagating
weakly damped capillary waves of spanwise wavenumber
b = 1. In Section 4.3, these two modes are artificially
extracted to examine their contribution to energy growth.
In the three-dimensional case, the numerical ranges are
even more clearly expanded by the presence of these capil-
lary modes in the spectrum. The increased numerical
abscissa, x(A), corresponds to increased energy growth
rates at t = 0, as we examine in the next section. The
numerical range and abscissa are larger at lower We (stron-
ger capillarity) in Fig. 3a as was true in Fig. 2a, again due
to the capillary component of the spectrum. In Fig. 3b (as
in Fig. 2b) the viscosity ratio is increased by a factor of 10
and the numerical range instead grows as We increases, as a
result of the decreased stability of the non-capillary modes,
whose properties depend strongly on the viscosity ratio.
Capillarity nevertheless enhances the energy growth rate,
even in the case of Fig. 3b, as will be examined next.
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Fig. 3. Spectrum, r(A), and numerical range, W(A), for three-dimensional
disturbances: Re = 900, a = 0, b = 1; (a) m = 2, (b) m = 20.
4.2. Transient energy growth rates

In the case of two-dimensional disturbances, the energy
growth G(t) exhibits the characteristic shape seen by South
and Hooper (1999) for different flow parameters. Asymp-
totic instability of the interfacial mode is recovered, except
for small We, as expected for two-dimensional distur-
bances. Any intermediate time peak in G(t) is thus
followed by the concurrent exponential growth. The peak
growth for two-dimensional disturbances (see Fig. 4a) is
not the focus of this study. Instead, we note the differ-
ence in initial growth rates at different We that is appar-
ent in Fig. 4a, matching the predictions based on the
numerical abscissae computed in §4.1 (see Fig. 2). The
We = 1,We = 100 curves in Fig. 4a correspond to the same
flows whose spectra and numerical ranges were depicted in
Fig. 2a.

Transient energy growth of the three-dimensional dis-
turbances first examined in Fig. 3 is computed and pre-
sented in Fig. 4b, where it is seen that increased
interfacial tension reduces the transient growth peak, but
again leads to larger initial growth rates. These initial
growth rates correspond to the predictions based on the
numerical abscissae computed in Fig. 3a. A reduction of
the G(t) curves is not surprising in light of the fact that
interfacial tension exerts a damping influence on the modes
of the spectrum.

The oscillatory behavior of the energy visible at low We

in Fig. 4 was not seen in previous studies in which interfa-
cial tension was neglected (South and Hooper, 1999, 2007)
but ‘‘double-peak” behavior has been previously pointed
out by Olsson and Henningson (1995) for watertable flow.
Oscillatory growth in other non-normal systems has been
linked to global instability (Coppola and DeLuca, 2006)
and appears to be a generic feature of systems which sup-
port different types of modes (here capillary and shear
modes) between which energy can be exchanged (Chage-
lishvili et al., 1997, 2005).

In Fig. 5a the effect of capillarity is examined for a wider
range of We at the viscosity ratio m = 20 of the Kao and
Park experiments. A monotonic increase of GO, the peak
value, with We is apparent in Fig. 5a, although at
We = 1,10 the identification of GO is complicated by the
presence of the multiple maxima caused by oscillation in
G(t). The trend of GO in Fig. 5 suggests that the first, smal-
ler relative maximum of the We = 1 may not correspond to
the ‘‘true” GO value. This possibility is examined by com-
puting the scaling relations of the peak growth GO as a
function of the We.

Fig. 5b presents the scaling versus Weber number of the
three-dimensional disturbances (top two curves, with
points) along with scalings for two-dimensional distur-
bances (bottom two curves, with symbols). Here the wave-
number is not fixed but has been varied to achieve the
maximum growth factor GP := maxbGO where a = 0 for
three-dimensional disturbances and GP := maxaGO where
b = 0 for two-dimensional disturbances. Three-dimensional
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disturbances reveal a scaling such that GP /We1/2 approx-
imately, for 1 < We [ 50. A best fit line to the m = 20 curve
over this range of We has slope �0.47. The origin of We1/2

scaling has not been forthcoming analytically, and remains
the subject of future work. Still, it seems reasonable to argue
that the energy growth must deviate from an exact We1/2

relation simply because interfacial energy is one component
of total energy. Thus there should be a negligible depen-
dence of GO on We at large We; this is consistent with the
rightmost points of Fig. 5b and much more apparent in
the m = 2 curve. A best fit line to the m = 20 curve for
We J 50 has slope �0.34, as can be verified visually by
comparison with the slope 1/3 line segment.

The lower curves in Fig. 5b correspond to the two-
dimensional disturbance case of Fig. 4a, indicating that
the peak growth is essentially independent of We for
We J 10. The bottom-most curve in Fig. 5b is for the
same two-dimensional disturbances, but with a thinner
lower layer, n = 2, for which increased eigenvalue stability
is found (see Hooper, 1989 or Yiantsios and Higgins
(1988)). Peak growth remains essentially independent of
We. Yet three dimensionality alone is not what leads to
We-dependent GO, as can be seen in the counterexample
of Yecko and Zaleski (2005), where identical three-
dimensional disturbances (but in a matched boundary layer
two-phase flow) displayed an energy peak essentially inde-
pendent of We.

4.3. Direct role of capillary modes

To examine directly the role of the discrete capillary
modes on G(t) for streamwise uniform disturbances, the
computation of energy growth has also been performed
with these two modes excluded, defining the quantity
N(t). The result, shown in Fig. 6a, is remarkable: oscilla-
tory behavior vanishes when capillary modes are excluded,
leading to a significant change in the character of the
energy growth curve. Note that the exclusion of these
two capillary modes does not correspond to the elimination
of capillary effects – all of the remaining modes used in the
computation of N(t) incorporate capillary effects, some
strongly, in their eigenvalues and eigenfunctions. Equally
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striking is the effect on the initial growth rates, which are
greatly enhanced by the capillary modes, visible directly
in Fig. 6a and revealed by the companion numerical ranges
depicted in Fig. 6b.

At m = 2 and We = 100, shown in Fig. 6c and d, the
oscillatory component of growth is less obvious, but the
increase of initial growth rates effected by the capillary
modes is clear, both in the energy growth (Fig. 6c) and in
the numerical range and abscissa (Fig. 6d). Note that the
‘‘complete” growth curve in Fig. 6a is the same as the
We = 10 curves in Fig. 5a. Also, the disturbance of
Fig. 6c is the same as the We = 100 curve of Fig. 4b and
will correspond to one of the optimal disturbances that will
be examined in §4.4.

Also depicted in Fig. 6a and c are two other quantities
related to the disturbance energy. The first is C(t), the
energy growth due to the two capillary modes alone. C(t)
is the lowest of the four plotted curves, exhibiting damped
oscillations until its amplitude becomes negligible at large
time. The short time growth peaks, however, indicate that
these asymptotically damped capillary modes are them-
selves non-normal, exhibiting a transient growth. Oscilla-
tory energy growth in a system with interfacial tension
but no shear has been recently examined by Coppola and
DeLuca (2006) and DeLuca and Caramiello (2001), who
also linked this behavior to the peculiar properties of the
spectra in non-normal systems.

The final auxiliary energy measure, identified as S(t), is
simply the difference: S(t) = G(t) � N(t). In a normal sys-
tem S(t) = C(t). That S(t) > C(t) for most t indicates that
the capillary mode pair is not orthogonal to the comple-
mentary subspace of non-capillary modes, allowing
enhanced transient growth to occur in the complete system.
The physical counterpart of this property is examined next.

4.4. Optimal disturbances: Scaling and structure

To more completely examine the scaling of the energy
growth first observed in §4.2, the quantity GO is now com-
puted over a broad range of wavenumber, Weber number
and viscosity ratio. Fig. 7 displays the surface GO(b,We)
for b in (0,2p] and We in [1,750] at two values of the vis-
cosity ratio: m = 2 and m = 20. It is immediately apparent
that there are two families of disturbances of greatest
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growth (optimal disturbances): one at low wavenumber,
scaling as We1/2, and another at high wavenumber, inde-
pendent of We. The wavenumber of optimal growth, bP,
of the low wavenumber disturbances also depends on
We: for example, bP = 0.34 at We = 1 while bP = 1.38 at
We = 400 (for viscosity ratio m = 2). The high wavenum-
ber optimal growth occurs at bP = 3.1 for all We at
m = 2 (also with fixed GO = 72.4) and at bP = 4 for all
We at m = 20 (with GO = 378). The timescales over which
peak growth occurs are slightly different for the high wave-
number and low wavenumber disturbances. At high wave-
number the time of peak growth, tP, is independent of We,
although its value does decrease as the viscosity ratio
becomes stronger. At low wavenumber, peak growth
increases weakly with We and is approximately equal to
the high wavenumber time at We = 1.

It appears from Fig. 7 that the cases m = 2 and m = 20
differ only quantitatively, but this is not entirely the case, as
can be seen in Fig. 8, where GO is computed over the range
of viscosity ratio from m = 2 to m = 20. The low wavenum-
ber and high wavenumber peaks remain clear, but there
is a shift in the bP value of the low wavenumber peak
below approximately m = 5, more obvious at We = 100
(Fig. 8b). As will be seen next, this is a consequence of a
change in the disturbance flow field.

That greater growth is possible in the complete system
suggests that the capillary modes both take part in and
enhance the mechanism of non-normal growth. In single
fluid shear, three-dimensional energy growth occurs by
the so-called lift-up mechanism, in which normal velocity
redistributes background shear, tapping its energy and gen-
erating normal vorticity (see Schmid and Henningson,
2000). In two-fluid shear, this mechanism is still active
(see also Yecko and Zaleski, 2005) but also involves the
interface displacement and therefore capillarity, and is
modified by the viscosity contrast, as we show next (see
also Malik and Hooper, 2007). The structure of three kinds
of optimal disturbances is now examined. Each example
has been chosen to be representative of a family, as identi-
fied in the peak growth maps. The disturbance flow fields
are depicted in a plane normal to the flow direction, plot-
ting (v,w) as a vector field with contours of u superim-
posed. The u fields at t = 0 fall below the contour
threshold. The interface displacement f is extracted directly
from the SVD solution of G(t) and is depicted as a wavy
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line with wavenumber b that has been normalized such that
f(t = 0) = 0.25.

First, we examine the low wavenumber disturbance at
m = 20 and We = 10, whose location is identified in
Fig. 7b and Fig. 8a with the symbol ‘A’. There is negligible
change in this disturbance’s structure as the Weber number
is changed. The disturbance in this case exhibits at t = 0 a
single row of streamwise vortices whose centers are found
just below the interface, as shown in Fig. 9. By t = tO the
vorticity has reorganized and more closely resembles two
rows of streamwise vortices. The vortices in the less viscous
layer are, as expected, much stronger while the weaker
upper-layer vortices are counter-rotating with respect to
their lower-layer counterparts. Near the interface, the flow
field surrounding these vortices has the appearance of a
row of source/sink regions which are the centers of stream-
wise jets just below the interface, an expected lift-up type
response. Energy growth has occurred mainly in the lower
layer. Such disturbances qualitatively resemble those found
in Malik and Hooper (2007) in the absence of interfacial
tension, where they were correlated with the two leading
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(solid line) at m = 20, We = 10, bP = 0.36 shown at t = 0 (a); and at t = tO

(b). The disturbance is nearly identical for other We.
adjoint modes of the system. A revealing feature of the nat-
ure of this type of disturbance is the favorable ‘‘in-phase”

arrangement of the initially displaced interface and the ini-
tial pattern of up-welling and down-welling between vorti-
ces. This arrangement has facilitated the rapid growth of
lower-layer energy by allowing very little change in the
interfacial amplitude by t = tO. Recall from Section 4.1
that for large m the shear destabilization of the leading
interface mode eigenmodes controlled the numerical range
rather than capillarity. Figs. 3b, 5a, and 6a correspond clo-
sely to the conditions of this disturbance. The second type
of disturbance is also of low wavenumber type, but at
m = 2 and We = 10, falling within the shifted GO peak vis-
ible at small m in Fig. 8b and identified there and also in
Fig. 7a with the symbol ‘B’. This disturbance has bP = 1,
so it also corresponds exactly to the cases studied in Figs.
3a, 4b and 6c. In contrast to the m = 20 case, this distur-
bance begins as two rows of co-rotating streamwise vorti-
ces and evolves by t = tO into a single vortex row, with
vortex centers just below the interface, as shown in
Fig. 10. Also, the interface has been pushed down and
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has slightly overshot y = 0 by the time of peak growth. By
comparison to disturbance A and direct inspection it is
clear that the interface dynamics is being assisted by the
unfavorable, ‘‘out of phase” arrangement of the initial
up-welling and down-welling pattern with respect to the
interface wave troughs and crests. As the vorticity reduces
the interface amplitude at early time, it extracts some of its
energy, enhancing its initial rate of growth. Recall that at
low viscosity ratio it is the capillary eigenvalues which
determined the numerical range and therefore the initial
growth rate.

Finally, we examine the high wavenumber, We-indepen-
dent disturbance identified in Figs. 7b and 8a by the sym-
bol ‘C’. Because the high wavenumber peak growth
factor does not depend on the Weber number, it may be
assumed that capillary effects are not relevant. This
assumption proves to be inaccurate, as can be concluded
from the disturbance structure. Fig. 11 clearly shows that
this disturbance is categorized by its rapid flattening of
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Fig. 11. High wavenumber optimal disturbance C: u-contours, (v,w)
vectors and interface (solid line) at m = 20, We = 10, bP = 4 shown at
t = 0 (a); and at t = tO (b). The disturbance is nearly identical for other m

and We; at m = 2, bP = 3.1.
the interface by t = tO. Disturbances of this type are thus
not expected to lead to interfacial patterns. Flattening is
facilitated by the unfavorable alignment of the up-welling
and down-welling in the less viscous lower layer with
respect to the interface troughs and crests. By t = tO, lift-
up has generated centers of positive and negative u velocity,
including a weak row at the interface. In contrast to A or B

type disturbances, the streamwise vorticity has undergone
little change by tO, although it is clear that some rearrange-
ment has taken place between t = 0, when the interface
amplitude is large, and t = tO, when the interface is flat.
That the GO value is independent of We is consistent with
the zero amplitude interface at tO. Thus while capillarity
has increased the initial growth rates of these disturbances,
it does not contribute to the peak growth factor. A more
detailed study of the combined dynamics of streamwise
vortices and a deformable interface between similar density
fluids is beyond the scope of this study, but analogous
problems have been the focus of many investigations (see
Sarpkaya, 1996 for a review, mostly in the context of free
surfaces).

5. Conclusions

This work has examined the role of finite interfacial
tension on the energy growth of three-dimensional distur-
bances in two-fluid channel flows. The broad effect of cap-
illarity acts through its effect on the spectrum of
eigenvalues, leading to reduced energy growth curves
G(t) as interfacial tension is increased and to the approx-
imate scaling GO /We1/2 at low wavenumber. The spe-
cific effect of capillary modes however, is to facilitate a
more rapid initial growth, leading to an oscillatory energy
growth curve and multiple peaks at both small and large
wavenumbers. These effects are found both in the direct
computation of disturbance energy and in the effect of
capillary modes on the spectrum. Capillary modes con-
tribute in two ways to non-normal growth: they are them-
selves non-normal, exhibiting oscillatory transient growth,
but they also extend the non-normality of the complete
problem. Enhanced energy growth can occur because cap-
illarity brings additional degrees of freedom to the
mechanical system – specifically, capillary modes interact
with the streamwise vortices of the lift-up mechanism,
allowing exchange of energy between the flow disturbance
and the dynamic interface. High wavenumber non-modal
disturbances are able to unleash this extra energy at early
times precisely because the flow associated with lift-up is
arranged so as to flatten the interface, as seen directly
in the disturbance flow fields. At low wavenumber, the
streamwise vortices of lift-up interact in a complex way
with the deforming interface, showing qualitatively differ-
ent behaviors at large viscosity ratio, where shear effects
dominate, than at small viscosity ratio, where capillary
effects dominate. Kao and Park noticed in their experi-
ments that most disturbed flows became quickly three-
dimensional, offering also that the three dimensionality
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was ‘‘enhanced by the extra degree of freedom of the
interface.” One may speculate that a low-dimensional sys-
tem modeling the most unstable two-dimensional (interfa-
cial) mode and the most rapidly growing three-
dimensional (non-normal) disturbance would shed more
light on the onset of three dimensionality. Barthelet
et al. (1995) have followed a related approach, but based
on two-dimensional modal disturbances, successfully
explaining patterns in two-fluid Couette flow.

Finally, it is worth pointing out that when x(A) 6 0,
the Lumer–Phillips theorem (Pazy, 1983; Trefethen and
Embree, 2005) ensures no initial or subsequent growth,
guaranteeing monotonic decay of energy. Thus, a non-
linear or energy stability criterion involving the capillar-
ity should be obtainable for this problem and like simi-
lar criteria for other flow problems, is likely to be
stringent.
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